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The Problem

I Not always possible to deploy & run a new RL policy
because of cost, risk, ethics, or legal concerns:

Healthcare: treatment effect Robotic & Control Web: recommendation, advertising, search

I Question: Can we evaluate a new policy π only using
data from old policy π0?

I Given trajectories Dπ0
= {τ (i)}1≤i≤m.

where τ = {(st, at, rt)}0≤t≤T
at ∼π0(·|st)

I Want to estimate “value” of the target policy π:

Rπ := lim
T→∞

Eτ∼π[RT(τ )], RT(τ ) := (
T∑
t=0

γtrt)/(
T∑
t=0

γt) ,

The Curse

I Importance Sampling(Basic Inverse Propensity Score
estimator):

RT
π = Eτ∼π0

[
T∏
t=0

π(at|st)
π0(at|st)

RT(τ )]. (1)

I The Curse of Horizon: variance can grow exponentially.
Motivated Example

’Circle’ MDP:

I Two actions: counterclockwise and
clockwise

I Deterministic transitions
As T →∞:

I IS/DR variance goes to ∞
I But both policies visit every state

equally often

The Magics

I Consider dπ(s) as marginal visiting prob. of state s
under policy π.

Rewriting: Rπ = Es∼dπ0
,a∼π0(·|s)

[
dπ(s)

dπ0
(s)

π(a|s)

π0(a|s)
r(s, a)

]
,

(2)

I Now importance ratio no longer depends on T .

Theorem
Define

L(w , f ) := E(s,a,s ′)∼dπ0

[
∆(w ; s, a, s ′)f (s ′)

]
. (3)

We have

L(w , f ) = 0, ∀f ⇐⇒ w ∝ dπ(s)

dπ0
(s)

, (4)

where ∆(w ; s, a, s ′) = w(s) π(a|s)
π0(a|s) − w(s ′)

The Algorithm

Algorithm

1.Solve ŵ = min
w∈W

max
f ∈F

L̂(w , f ,Dπ0
) (5)

2.Estimate R̂π = Ê(s,a)∼dπ0
[ŵ(s)

π(a|s)

π0(a|s)
r(s, a)] (6)

I Inner max: similar to GAN discriminator

I If we take F to be RKHS with kernel k , will have closed
form solution:
max
f ∈F

L(w , f )2 = Edπ0

[
∆(w ; s, a, s ′)∆(w ; s̄, ā, s̄ ′)k(s ′, s̄ ′)

]
,

(7)

I Same idea applies to discounted reward case

The Results

Estimate ŵ
(taxi environment)
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Traffic control

(with SUMO simulator)
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