

The Problem

$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{\tau \sim \tau_{2}} \left[\prod_{t=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{\tau \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{\tau \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{\tau \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{\tau \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{\tau \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{\tau \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{t \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{t \sim \tau_{2}} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Horizon: variance can grow exponentially.
$$\frac{\operatorname{Rec}}{\operatorname{Rec}} = \mathbb{E}_{t \sim t} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \mathbb{R}^{T}(\tau) \right], \quad (1)$$

$$f \operatorname{Hore ministic transitions} \operatorname{Rec} = \mathbb{E}_{t \sim t} \left[\prod_{\tau=0}^{T} \frac{\pi(a_{t}|s_{t})}{\pi(a_{t}|s_{t})} \mathbb{E}_{t} \left[\prod_{\tau=0}^{T} \frac{$$$$$$$$$$$$$$$$$$$$

Breaking the Curse of Horizon: Infinite-horizon Off-policy Estimation

Qiang Liu[†] Lihong Li[‡] Ziyang Tang[†] Dengyong Zhou[‡]

[†]Department of Computer Science, University of Texas at Austin [‡]Google Brain

The Magics

Estimate \hat{w} (taxi environment)

Pendulum

Traffic control

(with SUMO simulator)

This work is supported in part by NSF CRI 1830161. We would like to acknowledge Google **Cloud for their support.**

Acknowledgment