The Problem

because of cost, risk, ethics, or legal concerns:

Healthcare: treatment effect Robotic & Control

. Question: Can we evaluate a new policy 7 only using

data from old policy my?
- Given trajectories D,, = (i i,
where T = {(s¢, ar, 1) bo<t<T

.- Not always possible to deploy & run a new RL policy

Web: recommendation, advertising, search
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- Want to estimate “value” of the target policy :
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The Curse

- Importance Sampling(Basic Inverse Propensity Score
estimator):
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. The Curse of Horizon: variance can grow exponentially.

Motivated Example

equally often

'Circle’ MDP:
’f\ . Two actions: counterclockwise and
m clockwise
; }p » Deterministic transitions
\ As T — oo:
N - IS/DR variance goes to oo
1—p

- But both policies visit every state
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The Magics

. Consider d.(s) as marginal visiting prob. of state s
under policy .

i d.(s) m(a|s)

Rewriting: R, = Used,,a~mo(-s)

- Now importance ratio no longer depends on [

Define

L(w, f) = U (s.2.5')d [A(W; s, a, 5’)f(5')}

We have
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where A(w; s,a,s’) = W(S);O((j‘ss)) w(s')

The Results

The Algorithm

1.Solve W = min max L(w, f, D)
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. Inner max: similar to GAN discriminator

. If we take F to be RKHS with kernel k, will have closed

form solution:

L(w,f)*=E
Tg;)'( (Wv) d

- Same idea applies to discounted reward case
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Our Method

This work is supported in part by NSF CRII

(11830161. We would like to acknowledge Google

Cloud for their support.



